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 Everything in the Computer is represented as Binary 
Numbers 

 Registers contain either data or control information –
possible data types are

 Numbers used in computations

 Letters of the alphabet used in data processing

 Other discrete symbols used for specific purposes

 A number system of base, or radix, r is a system that 
uses distinct symbols for r digits

 For decimal number system r = 10 – for the natural 
numbers, we start counting at 0
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 Other digits in the decimal numerals are 0, 1, ..., 9

 For binary numerals, r = 2 – the digits are 0, and 1

 Other number systems frequently used in computer 

systems are octal (r = 8) with digits 0, 1, ..., 6, 7 and 

hexadecimal (r = 16) with digits 0, 1, ..., 8, 9, A, B, C, D, E, 

and F

 Often we use subscripts to indicate the base, e.g., (1804)10, or 

(1011)2, or (615)8

 Normally we use base 10 when we count – we can 

become so used to it we don't think about it
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 Although computers are very sophisticated from the 
outside, with all kinds of flashy buttons, screens, and so 
forth, the basic works are essentially many rows of on/off 
switches

 A single on/off switch has only 2 possible settings or states, but 
a row of 2 such switches has 4 possible states

 Computers generally work with groups of 32 switches (also 
called 32 bits, where a bit is the official name for position that 
can either be on or off) and sometimes now with groups of 64

On On On Off Off On Off Off
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 For example, take 9 and write that in binary

(9)10 = (1001)2

and that only has four digits

 We could seemingly manage by using only 4 bits (where we 
make them on, off, off, on) and it seems a waste to use 32 bits 
– however, it is generally simpler to decide to use 32 bits from 
the start – for this number 9 we can pad it out by putting 
zeroes in front

(9)10 = (1001)2 = (00...001001)2

 One practical aspect of this system is that it places a limit on 
the maximum size of the integers we can store
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 So in a 32-bit computer, the decimal number 9 which is 

equivalent to 1001 in binary will stored in the computer 

memory as follows:

0   0   0 ... 0   0   1   0   0   1

1   2   3 ...27 28 29 30 31 32 – bit position

 Bit position 1 is reserved for the sign of the integer – 0 for a 

positive integer, and 1 for a negative integer

 That means that we have space to store integers from about -231 to 

231

 To be precise, that would be 2 x 231 + 1 = 232 + 1 numbers if we 

include zero



Common Number Systems

System Base Symbols

Used by 

humans?

Used in 

computers?

Decimal 10 0, 1, … 9 Yes No

Binary 2 0, 1 No Yes

Octal 8 0, 1, … 7 No No

Hexa-

decimal

16 0, 1, … 9,

A, B, … F

No No



Quantities/Counting (1 of 3)

Decimal Binary Octal

Hexa-

decimal

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7



Quantities/Counting (2 of 3) 

Decimal Binary Octal

Hexa-

decimal

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F



Quantities/Counting (3 of 3) 

Decimal Binary Octal

Hexa-

decimal

16 10000 20 10

17 10001 21 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

21 10101 25 15

22 10110 26 16

23 10111 27 17 Etc.



Conversion Among Bases

• The possibilities:

Hexadecimal

Decimal Octal

Binary



Quick Example

2510 = 110012 = 318 = 1916

Base



Decimal to Decimal (just for fun)

Hexadecimal

Decimal Octal

Binary



12510 => 5 x 100 =   5

2 x 101 =  20

1 x 102 = 100

125

Base

Weight



Binary to Decimal

Hexadecimal

Decimal Octal

Binary



Binary to Decimal

• Technique

– Multiply each bit by 2n, where n is the “weight” 

of the bit

– The weight is the position of the bit, starting 

from 0 on the right

– Add the results



Example

1010112 => 1 x 20 = 1

1 x 21 = 2

0 x 22 = 0

1 x 23 = 8

0 x 24 = 0

1 x 25 = 32

4310

Bit “0”



Octal to Decimal

Hexadecimal

Decimal Octal

Binary



Octal to Decimal

• Technique

– Multiply each bit by 8n, where n is the “weight” 

of the bit

– The weight is the position of the bit, starting 

from 0 on the right

– Add the results



Example

7248 => 4 x 80 = 4

2 x 81 = 16

7 x 82 = 448

46810



Hexadecimal to Decimal

Hexadecimal

Decimal Octal

Binary



Hexadecimal to Decimal

• Technique

– Multiply each bit by 16n, where n is the 

“weight” of the bit

– The weight is the position of the bit, starting 

from 0 on the right

– Add the results



Example

ABC16 => C x 160 = 12 x   1 =   12

B x 161 = 11 x  16 =  176

A x 162 = 10 x 256 = 2560

274810



Decimal to Binary

Hexadecimal

Decimal Octal

Binary



Decimal to Binary

• Technique

– Divide by two, keep track of the remainder

– First remainder is bit 0

– Second remainder is bit 1

– Etc.



Example

12510 = ?2
2 125

62   12    

31   02    

15   12    

7   12    

3   12    

1   12    

0   1

12510 = 11111012



Octal to Binary

Hexadecimal

Decimal Octal

Binary



Octal to Binary

• Technique

– Convert each octal digit to a 3-bit equivalent 

binary representation



Example

7058 = ?2

7   0   5

111 000 101

7058 = 1110001012



Hexadecimal to Binary

Hexadecimal

Decimal Octal

Binary



Hexadecimal to Binary

• Technique

– Convert each hexadecimal digit to a 4-bit 

equivalent binary representation



Example

10AF16 = ?2

1    0    A    F

0001 0000 1010 1111

10AF16 = 00010000101011112



Decimal to Octal

Hexadecimal

Decimal Octal

Binary



Decimal to Octal

• Technique

– Divide by 8

– Keep track of the remainder



Example

123410 = ?8

8  1234

154   28

19   28

2   38

0   2

123410 = 23228



Decimal to Hexadecimal

Hexadecimal

Decimal Octal

Binary



Decimal to Hexadecimal

• Technique

– Divide by 16

– Keep track of the remainder



Example

123410 = ?16

123410 = 4D216

16  1234

77   216

4   13 = D16

0   4



Binary to Octal

Hexadecimal

Decimal Octal

Binary



Binary to Octal

• Technique

– Group bits in threes, starting on right

– Convert to octal digits



Example

10110101112 = ?8

1 011 010 111

1  3   2   7

10110101112 = 13278



Binary to Hexadecimal

Hexadecimal

Decimal Octal

Binary



Binary to Hexadecimal

• Technique

– Group bits in fours, starting on right

– Convert to hexadecimal digits



Example

10101110112 = ?16

10 1011 1011

2 B     B

10101110112 = 2BB16



Octal to Hexadecimal

Hexadecimal

Decimal Octal

Binary



Octal to Hexadecimal

• Technique

– Use binary as an intermediary



Example

10768 = ?16

1    0     7     6

001  000   111   110

2     3       E

10768 = 23E16



Hexadecimal to Octal

Hexadecimal

Decimal Octal

Binary



Hexadecimal to Octal

• Technique

– Use binary as an intermediary



Example

1F0C16 = ?8

1     F      0      C

0001  1111   0000   1100

1   7   4     1     4

1F0C16 = 174148



Exercise – Convert ...

Decimal Binary Octal

Hexa-

decimal

33

1110101

703

1AF



Exercise – Convert …

Decimal Binary Octal

Hexa-

decimal

33 100001 41 21

117 1110101 165 75

451 111000011 703 1C3

431 110101111 657 1AF

Answer



Common Powers (1 of 2)

• Base 10
Power Preface Symbol

10-12 pico p

10-9 nano n

10-6 micro 

10-3 milli m

103 kilo k

106 mega M

109 giga G

1012 tera T

Value

.000000000001

.000000001

.000001

.001

1000

1000000

1000000000

1000000000000



Common Powers (2 of 2)

• Base 2
Power Preface Symbol

210 kilo k

220 mega M

230 Giga G

Value

1024

1048576

1073741824

• What is the value of “k”, “M”, and “G”?

• In computing, particularly w.r.t. memory,

the base-2 interpretation generally applies



Example

/ 230 =

In the lab…

1. Double click on My Computer

2. Right click on C:

3. Click on Properties



Exercise – Free Space

• Determine the “free space” on all drives on 

a machine in the lab

Drive

Free space

Bytes GB

A:

C:

D:

E:

etc.



Fractions

• Decimal to decimal (just for fun)

3.14 => 4 x 10-2 = 0.04

1 x 10-1 = 0.1

3 x 100 = 3

3.14



Fractions

• Binary to decimal

10.1011 => 1 x 2-4 = 0.0625

1 x 2-3 = 0.125

0 x 2-2 = 0.0

1 x 2-1 = 0.5

0 x 20 = 0.0

1 x 21 = 2.0

2.6875



Fractions

• Decimal to binary

3.14579

.14579

x     2

0.29158

x     2

0.58316

x     2

1.16632

x     2

0.33264

x     2

0.66528

x     2

1.33056

etc.11.001001...



Exercise – Convert ...

Decimal Binary Octal

Hexa-

decimal

29.8

101.1101

3.07

C.82



Exercise – Convert …

Decimal Binary Octal

Hexa-

decimal

29.8 11101.110011… 35.63… 1D.CC…

5.8125 101.1101 5.64 5.D

3.109375 11.000111 3.07 3.1C

12.5078125 1100.10000010 14.404 C.82

Answer
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 Sometimes for big numbers, we use scientific notation 
(engineering). The usual scientific notation is like this

 54321.67 = 5.432167 x 104

 and we call 5.432167, the mantissa, and the power (in this case 
4), the exponent

 In binary number system too, the numbers can be expressed in 
scientific notations
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 Like the decimal system, multiplying or dividing by powers of simply 

moves the 'binary point'

 (1101.11)2 = (1.10111)2 x 23

 What do we do with these numbers in scientific 

notation?

 Within the 32-bits they have to store the mantissa and the 

exponent

 Computers usually allocate 24 bits for storing the mantissa (including 

its possible sign) and the remaining 8 bits for the exponent

 In our example, 24 bits is plenty for the mantissa and we would need 

make it longer to fill up the 24 bits: (1.10111000 ...)2 will be same as 

(1.10111)2
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 If there are numbers that need more than 24 binary digits in the 

mantissa, they are generally rounded off

 If we now fill out the 32 bits for the number (1101.11)2

 Remember that the exponent was (3)10 or (11)2, so

 0  1  1  0  1  1  1  0 ... 0  || 0 ... 0   1   1

 1  2  3  4  5  6  7  8 ...24 ||25...30 31 32 – bit position

 Bit 1 is kept for the possible sign on the mantissa, in particular, the 

value of bit 1 is 0 for positive numbers and 1 for negative numbers



THANKS


