
Lecture 7

Bitwise Operator

By Hafijur Rahman

Bitwise Operators

Goal: Manipulation of Individual bits.

Unsigned integers are normally used with the bitwise

operators.

About Bits

 Any integral number can be thought of as a sequence of bits .

 These bits can be thought of as the representation of the

number in binary (base-2) arithmetic

 For example, the number 87 (decimal) can be represented

in binary as 1010111

64 32 16 8 4 2 1

1 0 1 0 1 1 1

 Individual bits are often used to represent Boolean values

The << and >> Operators

 The << (shift-left) operator is used to shift the bit pattern of

a number a certain number of bits to the left

 The >> (shift-right) operator shifts the bit pattern in the

opposite direction

 Shifting produces undefined results when going left “too far”,

but when going right bits are simply truncated

The << and >> Operators

13 << 3 = 104

13 (00001101)

104 (01101000)

 Incidentally, 13 * 23 = 104

52 >> 4 = 3

52 (00110100)

3 (00000011)

 Incidentally, 52 / 24 = 3 (integer division)

The ~ Operator

 The ~ (bitwise inverse) operator simply reverses

each bit in the bit pattern (produces the “ones complement”)

of the number

 For example (using 8-bit numbers):

~211 = 44

211 (11010011)

44 (00101100)

 Incidentally, 211 + 44 = 255 (largest 8-bit number)

The & and | Operators

 The & (“Bitwise And”) operator produces a result such that:

 If a bit is on in both operands, it is on in the result

 If a bit is off in either operand, it is off in the result

 The | (“Bitwise Or”) operator produces a result such that:

 If a bit is on in either operand, it is on in the result

 If a bit is off in both operands, it is off in the result

The & Operator

The bits in the result are set to 1 if the corresponding bits in
the two operands are both 1.

Example:

104 & 13 = 8

104 (01101000)

13 (00001101)

8 (00001000)

Question: what is the difference between logical and(&&) and
bitwise and(&)?

The | Operator

The bits in the result are set to 1 if at least one of the

corresponding bits in the two operands is 1.

Example:

52 | 12 = 60

52 (00110100)

12 (00001100)

60 (00111100)

The ^(bitwise XOR) Operator

The bits in the result are set to 1 if exactly one of the

corresponding bits in the two operands is 1.

Example:

15 ^ 127 = 112

15 (00001111)

127 (01111111)

112 (01110000)

The & and | Operators (cont.)

 “Turning a bit on” is usually achieved as follows:

#define FAILED (1<<3)

status |= FAILED;

 “Turning a bit off ” is usually achieved as follows:

status &= ~ FAILED;

 “Testing whether a bit is on” is usually achieved as follows:

if (status & FAILED)

if (!(status & FAILED))

Thanks

